Markscheme

May 2018

Physics

Standard level

Paper 2

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question			Answers	Notes	Total
1.	a		use of conservation of energy OR $\begin{aligned} & v^{2}=u^{2}+2 a s \checkmark \\ & v=《 \sqrt{2 \times 60.0 \times 9.81} »=34.3<\mathrm{ms}^{-1} » \end{aligned}$		2
1.	b	i	use of impulse $F_{\text {ave }} \times \Delta t=\Delta p$ OR use of $F=$ ma with average acceleration OR $\begin{aligned} & F=\frac{80.0 \times 34.3}{0.759} \\ & 3620 « N » \checkmark \end{aligned}$	Allow ECF from (a).	2
1.	b	ii	upwards \checkmark clearly longer than weight \checkmark	For second marking point allow ECF from (b)(i) providing line is upwards.	2
1.	b	iii	$\begin{aligned} & 3620+80.0 \times 9.81 \checkmark \\ & 4400 « N » \checkmark \end{aligned}$	Allow ECF from (b)(i).	2

(continued...)
(Question 1 continued)

1.	c	i	(loss in) gravitational potential energy (of block) into kinetic energy (of block) \checkmark	Must see names of energy (gravitational potential energy and kinetic energy) Allow for reasonable variations of terminology (eg energy of motion for $K E)$.	1
1.	c	ii	(loss in) gravitational potential and kinetic energy of block into elastic potential energy of rope \checkmark	See note for 1(c)(i) for naming convention. Must see either the block or the rope (or both) mentioned in connection with the appropriate energies.	1
1.	d		k can be determined using EPE $=\frac{1}{2} k x^{2} \quad \checkmark$ correct statement or equation showing GPE at $A=E P E$ at C OR $(G P E+K E)$ at $B=E P E$ at $C \checkmark$	Candidate must clearly indicate the energy associated with either position A or B for MP2.	2

2.	a		$\begin{aligned} & \text { « } \frac{3.0 \times 8.31 \times 290}{0.15} » \\ & 48 \text { «kPa» } \checkmark \end{aligned}$		1
2.	b	i	$\text { mass }=« \frac{860}{3100 \times 23} \Rightarrow 0.012 « \mathrm{~kg} » \quad \checkmark$	Award [1] for a bald correct answer.	1
2.	b	ii	$\frac{3}{2} 1.38 \times 10^{-23} \times 313=6.5 \times 10^{-21} « \mathrm{~J} »$		1
2.	C		larger temperature implies larger (average) speed/larger (average) KE of molecules/particles/atoms \checkmark increased force/momentum transferred to walls (per collision) / more frequent collisions with walls \checkmark increased force leads to increased pressure because $P=F / A$ (as area remains constant) \checkmark	Ignore any mention of $P V=n R T$.	3

3.	a	i	superposition of light from each slit / interference of light from both slits \checkmark with path/phase difference of any half-odd multiple of wavelength/any odd multiple of π (in words or symbols) \checkmark producing destructive interference \checkmark	Ignore any reference to crests and troughs.	3
3.	a	ii	evidence of solving for D « $D=\frac{s d}{\lambda} » \checkmark$ $\text { « } \frac{4.50 \times 10^{-3} \times 0.300 \times 10^{-3}}{633.0 \times 10^{-9}} \times 2 »=4.27<\mathrm{m} » \downarrow$	Award [1] max for 2.13 m .	2
3.	b	i	$\frac{633.0}{1.33}=476$ «nm» \checkmark		1
3.	b	ii	distance between peaks decreases $\sqrt{ }$ intensity decreases \checkmark		2

4.	a	$\begin{aligned} & 1.7 \times 10^{-8} \times \frac{0.10}{\left(0.02 \times 10^{-2}\right)^{2}} \\ & 0.043 « \Omega » \end{aligned}$		2
4.	b	$\begin{aligned} & v «=\frac{I}{n e A} »=\frac{2}{8.5 \times 10^{22} \times 1.60 \times 10^{-19} \times 0.02^{2}} \\ & 0.368 « \mathrm{~cm} \mathrm{~s}^{-1} » \checkmark \\ & 0.37 \text { «} \mathrm{cm} \mathrm{~s}^{-1} » \end{aligned}$	Award [2 max] if answer is not expressed to 2 sf.	3

5.	a		out of the page plane / $\odot \checkmark$	Do not accept just "up" or "outwards".	1
5.	b		$1.60 \times 10^{-19} \times 6.8 \times 10^{5} \times 8.5=9.2 \times 10^{-13}$ «N》		1
5.	C	i	the magnetic force does not do work on the electron hence does not change the electron's kinetic energy OR the magnetic force/acceleration is at right angles to velocity \checkmark		1
5.	c	ii	the velocity of the electron is at right angles to the magnetic field \checkmark (therefore) there is a centripetal acceleration / force acting on the charge \checkmark	OWTTE	2

6.	a		${ }_{4}^{10} \mathrm{Be} \rightarrow{ }_{5}^{10} \mathrm{~B}+\quad+\overline{\mathrm{V}}_{\mathrm{e}}$ conservation of mass number AND charge ${ }_{5}^{10} \mathrm{~B},{ }_{4}^{10} \mathrm{Be} \checkmark$	Correct identification of both missing values required for [1].	1
6.	b	i	correct shape ie increasing from 0 to about $0.80 \mathrm{~N}_{0} \checkmark$ crosses given line at $0.50 \mathrm{~N}_{0} \checkmark$ number of nuclei		2

(continued...)
(Question 6b continued)

6.	b	ii	ALTERNATIVE 1 fraction of $\mathrm{Be}=\frac{1}{8}, 12.5 \%$, or $0.125 \checkmark$ therefore 3 half lives have elapsed \checkmark $t_{\frac{1}{2}}=\frac{4.3 \times 10^{6}}{3}=1.43 \times 10^{6} 《 \approx 1.4 \times 10^{6} \gg<y \gg$ ALTERNATIVE 2 fraction of $\mathrm{Be}=\frac{1}{8}, 12.5 \%$, or $0.125 \checkmark$ $\begin{aligned} & \frac{1}{8}=e^{-\lambda}\left(4.3 \times 10^{6}\right) \text { leading to } \lambda=4.836 \times 10^{-7} « y »^{-1} \\ & \frac{\operatorname{In} 2}{\lambda}=1.43 \times 10^{6} « y » \checkmark \end{aligned}$	Must see at least one extra sig fig in final answer.	3
6.	b	iii	$1.9 \times 10^{11} \checkmark$		1

(Question 6 continued)

6.	c	i	emission of (infrared) electromagnetic/infrared energy/waves/radiation. \checkmark		1
6.	C	ii	the (peak) wavelength of emitted em waves depends on temperature of emitter/reference to Wein's Law \checkmark so frequency/color depends on temperature \checkmark		2
6.	C	iii	$\begin{aligned} & \lambda=\frac{2.90 \times 10^{-3}}{253} \checkmark \\ & =1.1 \times 10^{-5} \text { «m» } \end{aligned}$	Allow ECF from MP1 (incorrect temperature).	2
6.	C	iv	correct units for Intensity (allow $\mathrm{W}, \mathrm{Nms}^{-1} \mathrm{OR} \mathrm{Js}^{-1}$ in numerator) \checkmark rearrangement into proper SI units $=\mathrm{kgs}^{-3} \checkmark$	Allow ECF for MP2 if final answer is in fundamental units.	2

