

Markscheme

May 2018

Physics

Standard level

Paper 2

10 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	Questi	on	Answers	Notes	Total
1.	а		use of conservation of energy OR $v^2 = u^2 + 2as \checkmark$ $v = \sqrt{2 \times 60.0 \times 9.81}$ = 34.3 \(\text{ms}^{-1}		2
1.	b	i	use of impulse $F_{ave} \times \Delta t = \Delta p$ OR use of $F = ma$ with average acceleration OR $F = \frac{80.0 \times 34.3}{0.759}$ 3620 «N» ✓	Allow ECF from (a).	2
1.	b	ii	upwards ✓ clearly longer than weight ✓	For second marking point allow ECF from (b)(i) providing line is upwards.	2
1.	b	iii	3620+80.0×9.81 ✓ 4400 «N» ✓	Allow ECF from (b)(i).	2

(continued...)

(Question 1 continued)

1.	С	i	(loss in) gravitational potential energy (of block) into kinetic energy (of block) ✓	Must see names of energy (gravitational potential energy and kinetic energy) – Allow for reasonable variations of terminology (eg energy of motion for KE).	1
1.	С	ii	(loss in) gravitational potential and kinetic energy of block into elastic potential energy of rope ✓	See note for 1(c)(i) for naming convention.	
				<u>Must</u> see either the block or the rope (or both) mentioned in connection with the appropriate energies.	1
1.	d		k can be determined using EPE = $\frac{1}{2}kx^2$		
			correct statement or equation showing	Candidate must clearly indicate the	
			GPE at A = EPE at C	energy associated with either position A or B for MP2.	2
			OR		
			(GPE + KE) at B = EPE at C ✓		

2.	а		«3.0×8.31×290 0.15 48«kPa» ✓		1
2.	b	i	mass = $\frac{860}{3100 \times 23}$ = > 0.012 «kg» ✓	Award [1] for a bald correct answer.	1
2.	b	ii	$\frac{3}{2}1.38 \times 10^{-23} \times 313 = 6.5 \times 10^{-21} \text{ «J» } \checkmark$		1
2.	С		larger temperature implies larger (average) speed/larger (average) KE of molecules/particles/atoms ✓ increased force/momentum transferred to walls (per collision) / more frequent collisions with walls ✓ increased force leads to increased pressure because P=F/A (as area remains constant) ✓	Ignore any mention of PV=nRT.	3

3.	а	i	superposition of light from each slit / interference of light from both slits \checkmark with path/phase difference of any half-odd multiple of wavelength/any odd multiple of π (in words or symbols) \checkmark producing destructive interference \checkmark	Ignore any reference to crests and troughs.	3
3.	а	ii	evidence of solving for $D \cdot D = \frac{sd}{\lambda}$ \checkmark $\frac{4.50 \times 10^{-3} \times 0.300 \times 10^{-3}}{633.0 \times 10^{-9}} \times 2 = 4.27 \text{ m}$	Award [1] max for 2.13 m.	2
3.	b	i	$\frac{633.0}{1.33} = 476 \text{ «nm» } \checkmark$		1
3.	b	ii	distance between peaks decreases ✓ intensity decreases ✓		2

4.	а	1.7×10 ⁻⁸ × $\frac{0.10}{(0.02 \times 10^{-2})^2}$ ✓ 0.043«Ω» ✓		2
4.	b	$v = \frac{I}{neA}$ = $\frac{2}{8.5 \times 10^{22} \times 1.60 \times 10^{-19} \times 0.02^{2}}$ 0.368 «cms ⁻¹ » 0.37 «cms ⁻¹ » \checkmark	Award [2 max] if answer is not expressed to 2 sf.	3

5.	а		out of the page plane / ⊙ ✓	Do not accept just "up" or "outwards".	1
5.	b		$1.60 \times 10^{-19} \times 6.8 \times 10^{5} \times 8.5 = 9.2 \times 10^{-13}$ «N» \checkmark		1
5.	С	i	the magnetic force does not do work on the electron hence does not change the electron's kinetic energy OR the magnetic force/acceleration is at right angles to velocity ✓		1
5.	С	ii	the velocity of the electron is at right angles to the magnetic field \checkmark (therefore) there is a centripetal acceleration / force acting on the charge \checkmark	OWTTE	2

6.	а		$^{10}_{4}\text{Be}$ → $^{10}_{5}\text{B}$ + $$ + $\overset{-}{\text{V}}_{\rm e}$ conservation of mass number <i>AND</i> charge $^{10}_{5}\text{B}$, $^{10}_{4}\text{Be}$ ✓	Correct identification of both missing values required for [1].	1
6.	b	i	correct shape ie increasing from 0 to about $0.80\mathrm{N_0}$ \checkmark crosses given line at $0.50\mathrm{N_0}$ \checkmark number of nuclei $ \begin{array}{c c} N_0 & \text{number of remaining} \\ 0.75\mathrm{N_0} & \text{beryllium-10 nuclei} \\ 0.25\mathrm{N_0} & \text{time} \end{array} $		2

(continued...)

(Question 6b continued)

$t_{\frac{1}{2}} = \frac{4.3 \times 10^{6}}{3} = 1.43 \times 10^{6} \text{ "} \times 1.4 \times 10^{6} \text{ "} \text{ "} \text{"} $ $ALTERNATIVE 2$ fraction of Be = $\frac{1}{8}$, 12.5%, or 0.125 \checkmark	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3
$\frac{1}{8} = e^{-\lambda} \left(4.3 \times 10^{6} \right) \text{ leading to } \lambda = 4.836 \times 10^{-7} \text{ wy}^{-1} \checkmark$ $\frac{\ln 2}{\lambda} = 1.43 \times 10^{6} \text{ wy} \checkmark$ 6. b iii $1.9 \times 10^{11} \checkmark$	

(continued...)

(Question 6 continued)

6.	С	i	emission of (infrared) electromagnetic/infrared energy/waves/radiation. 🗸		1
6.	С	ii	the (peak) wavelength of emitted em waves depends on temperature of emitter/reference to Wein's Law ✓ so frequency/color depends on temperature ✓		2
6.	С	iii	$\lambda = \frac{2.90 \times 10^{-3}}{253} \checkmark$ = 1.1×10 ⁻⁵ «m» \checkmark	Allow ECF from MP1 (incorrect temperature).	2
6.	С	iv	correct units for Intensity (allow <i>W, Nms</i> ⁻¹ <i>OR Js</i> ⁻¹ <i>in numerator</i>) ✓ rearrangement into proper SI units = kgs ⁻³ ✓	Allow ECF for MP2 if final answer is in fundamental units.	2